A Computational Screen for Type I Polyketide Synthases in Metagenomics Shotgun Data
نویسندگان
چکیده
BACKGROUND Polyketides are a diverse group of biotechnologically important secondary metabolites that are produced by multi domain enzymes called polyketide synthases (PKS). METHODOLOGY/PRINCIPAL FINDINGS We have estimated frequencies of type I PKS (PKS I) - a PKS subgroup - in natural environments by using Hidden-Markov-Models of eight domains to screen predicted proteins from six metagenomic shotgun data sets. As the complex PKS I have similarities to other multi-domain enzymes (like those for the fatty acid biosynthesis) we increased the reliability and resolution of the dataset by maximum-likelihood trees. The combined information of these trees was then used to discriminate true PKS I domains from evolutionary related but functionally different ones. We were able to identify numerous novel PKS I proteins, the highest density of which was found in Minnesota farm soil with 136 proteins out of 183,536 predicted genes. We also applied the protocol to UniRef database to improve the annotation of proteins with so far unknown function and identified some new instances of horizontal gene transfer. CONCLUSIONS/SIGNIFICANCE The screening approach proved powerful in identifying PKS I sequences in large sequence data sets and is applicable to many other protein families.
منابع مشابه
Discovery Strategies of Bioactive Compounds Synthesized by Nonribosomal Peptide Synthetases and Type-I Polyketide Synthases Derived from Marine Microbiomes
Considering that 70% of our planet's surface is covered by oceans, it is likely that undiscovered biodiversity is still enormous. A large portion of marine biodiversity consists of microbiomes. They are very attractive targets of bioprospecting because they are able to produce a vast repertoire of secondary metabolites in order to adapt in diverse environments. In many cases secondary metabolit...
متن کاملTargeting modular polyketide synthases with iteratively acting acyltransferases from metagenomes of uncultured bacterial consortia.
Bacterial type I polyketide synthases (PKSs) produce a wide range of biomedically important secondary metabolites. These enzymes possess a modular structure that can be genetically re-engineered to yield novel drug candidates not found in nature. Recently, we have reported the putative pederin PKS from an uncultured bacterial symbiont of Paederus fuscipes beetles. It belongs to an architectural...
متن کاملPolyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms.
Recent literature on polyketide biosynthesis suggests that polyketide synthases have much greater diversity in both mechanism and structure than the current type I, II and III paradigms. These examples serve as an inspiration for searching novel polyketide synthases to give new insights into polyketide biosynthesis and to provide new opportunities for combinatorial biosynthesis.
متن کاملThe type I fatty acid and polyketide synthases: a tale of two megasynthases.
This review chronicles the synergistic growth of the fields of fatty acid and polyketide synthesis over the last century. In both animal fatty acid synthases and modular polyketide synthases, similar catalytic elements are covalently linked in the same order in megasynthases. Whereas in fatty acid synthases the basic elements of the design remain immutable, guaranteeing the faithful production ...
متن کاملPolyketide Synthases in the Microbiome of the Marine Sponge Plakortis halichondrioides: A Metagenomic Update
Sponge-associated microorganisms are able to assemble the complex machinery for the production of secondary metabolites such as polyketides, the most important class of marine natural products from a drug discovery perspective. A comprehensive overview of polyketide biosynthetic genes of the sponge Plakortis halichondrioides and its symbionts was obtained in the present study by massively paral...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS ONE
دوره 3 شماره
صفحات -
تاریخ انتشار 2008